- Pengertian Eliminasi Gauss
Eliminasi Gauss : Metode Gauss-Seidel
digunakan untuk menyelesaikan sistem persamaan linear (SPL) berukuran besar dan
proporsi koefisien nolnya besar, seperti sistem-sistem yang banyak ditemukan
dalam sistem persamaan diferensial. Metode iterasi Gauss-Seidel dikembangkan
dari gagasan metode iterasi pada solusi persamaan tak linier.
Teknik iterasi jarang digunakan untuk menyelesaikan SPL berukuran kecil karena metode-metode langsung seperti metode eliminasi Gauss lebih efisien daripada metode iteratif. Akan tetapi, untuk SPL berukuran besar dengan persentase elemen nol pada matriks koefisien besar, teknik iterasi lebih efisien daripada metode langsung dalam hal penggunaan memori komputer maupun waktu komputasi. Dengan metode iterasi Gauss-Seidel sesatan pembulatan dapat diperkecil karena dapat meneruskan iterasi sampai solusinya seteliti mungkin sesuai dengan batas sesatan yang diperbolehkan.
Teknik iterasi jarang digunakan untuk menyelesaikan SPL berukuran kecil karena metode-metode langsung seperti metode eliminasi Gauss lebih efisien daripada metode iteratif. Akan tetapi, untuk SPL berukuran besar dengan persentase elemen nol pada matriks koefisien besar, teknik iterasi lebih efisien daripada metode langsung dalam hal penggunaan memori komputer maupun waktu komputasi. Dengan metode iterasi Gauss-Seidel sesatan pembulatan dapat diperkecil karena dapat meneruskan iterasi sampai solusinya seteliti mungkin sesuai dengan batas sesatan yang diperbolehkan.
Implementasi di matlab
function [X1,g,H] = seidel(A,b,X0,T,N)
H = X0';
n = length(b);
X1 = X0 ;
for k=1:N,
for i=1:n,
S=b(i)-A(i,1:i-1)*X1(1:i-1)-A(i,i+1:n)*X0(i+1:n);
X1(i)=S/A(i,i);
end
g=abs(X1-X0);
err=norm(g);
relerr=err/(norm(X1)+eps);
X0=X1;
H=[H,X0'];
if(err<T)|(relerr<T),break,end
end
No comments:
Post a Comment